# OLAP database query optimizer and performance
---
## OLAP workloads
> Online analytical processing, or OLAP, is an approach to answer multi-dimensional analytical queries swiftly in computing.
https://en.wikipedia.org/wiki/Online_analytical_processing
---
## OLAP VS. OLTP: THE DIFFERENCES
> OLAP is used for complex data analysis, while OLTP is used for real-time processing of online transactions at scale.
https://www.snowflake.com/guides/olap-vs-oltp/
---
## Luft: OLAP database for Airbridge
https://engineering.ab180.co/stories/introducing-luft
---
## Airbridge dashboard demo
Let's take a look at what you'd do if you implemented.
1. Retention
2. Funnel
---
## TrailDB to Ziegel (C++ to GO)
https://marsettler.com/go/c++-to-go/
---
## Revisiting TODO
1. Remove TrailDB compatibility
2. More efficient memory management
3. Support very fast autoscale
4. Download partial column only if needed
- Pre requirment for the very fast autoscale
5. User level filter
---
## 오늘 할 이야기
- Luft 성능 리포트 2: 더 많은 코호트에 대한 리텐션 집계
- 제안서: Luft 의 대형 쿼리 처리에 관하여
- AWS Lambda 를 활용한 Luft 스케일링
---
## Luft 성능 리포트 2
## 더 많은 코호트에 대한 리텐션 집계
https://engineering.ab180.co/stories/luft-performance-report-2
---
## 제안서: Luft 의 대형 쿼리
## 처리에 관하여
https://engineering.ab180.co/stories/luft-query-optimizer-and-scale
---
## AWS Lambda 를 활용한
## Luft 스케일링
https://engineering.ab180.co/stories/luft-task-executor-with-aws-lambda
---
## Q & A
---
## Reference
- [Luft: 유저 행동 분석에 최적화된 OLAP 데이터베이스](https://engineering.ab180.co/stories/introducing-luft)
- [C++ to Go: Introducing Ziegel](https://marsettler.com/go/c++-to-go/)
- [Luft 성능 리포트 2: 더 많은 코호트에 대한 리텐션 집계](https://engineering.ab180.co/stories/luft-performance-report-2)
- [제안서: Luft 의 대형 쿼리 처리에 관하여](https://engineering.ab180.co/stories/luft-query-optimizer-and-scale)
- [AWS Lambda 를 활용한 Luft 스케일링](https://engineering.ab180.co/stories/luft-task-executor-with-aws-lambda)